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Abstract

A layerwise (zigzag) finite element formulation is developed for the buckling analysis of stiffened laminated plates.

The laminated plate is discretized into layers along the thickness direction. Each layer of the laminated plate is modeled

by the degenerated shell elements, and the stiffener is modeled by the general 3-D beam elements. Layers are stacked

together according to the interlayer continuity. In-plane displacements are considered in the derivation of geometric

stiffness matrix. The advantage of the proposed model is its applicability to both thin and thick laminated plates. The

significance of this study lies in the disclosure of the interaction between the lateral buckling of the stiffener and the

buckling of the laminate. The inverse iteration method is adopted to extract the lowest eigenvalue corresponding to

buckling. Parametric and comparative studies are conducted for different plate aspect ratios, plate thickness to length

ratios, degrees of layer orthotropy, ply orientations, and stiffener depth to plate thickness ratios. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Eccentrically stiffened plates are widely used as components of structural systems in civil, aerospace,
marine and automotive industries. Stiffeners are commonly attached to plates along the major load-car-
rying directions to achieve higher stiffness/weight and strength/weight ratios. To increase further, laminated
composites have been first introduced in the aerospace industry, and currently being used in the civil en-
gineering infrastructure such as bridge decks, bridge girders, strengthening and retrofitting existing struc-
tures, etc.

A comprehensive review on the literature regarding the buckling of unstiffened laminated plates was
carried out by Leissa (1987). With a few exceptions, most of the existing analytical solutions are based on
the classical laminate theory. Although the first-order shear deformable models are able to include the effect
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of the transverse shear deformation, their drawbacks are addressed in the uncertainties in the calculation of
the shear correction factor k. The value of k ¼ 5=6 proposed by Mindlin (1951) for isotropic plate was used
by Reddy (1984) to analyze laminated plates. Noor (1975) evaluated the values of k for cross-ply laminates
using the 3-D elasticity theory. Different k values were obtained in the x–z plane and y–z plane for sym-
metric laminates, e.g. kxz ¼ 0:8274 and kyz ¼ 0:5412. The difference decreases as the number of layers
increases, but significant difference exists even for laminates with a fairly large number of laminae, for
instance, kxz ¼ 0:934666 and kyz ¼ 0:84676 for nine-layer symmetric laminates. For modeling thick plates,
the shear correction factor k must depend on the thickness. But the derivation of a generic value of k is
likely at least as involved as the development of alternative models other than the first-order shear de-
formable model.

The refined shear deformable models, such as higher order model, layerwise model and 3-D elasticity
model, serve as alternatives to the first-order shear deformable models in the analysis of bare laminates. The
higher order shear deformable model was used for the buckling of laminated plates by Reddy and Phan
(1985). A static analysis of stiffened laminates was performed by Biswal and Ghosh (1994) using this model.
The 3-D elasticity models are the most sophisticated but very much demanding on computer resources.
This model was used by Noor (1975) for buckling of laminated plates. The generalized laminate theory
based on the idea of layerwise modeling was developed by Reddy (1987). Applying this theory, Reddy et al.
(1989) carried out an investigation on the stress in laminated plates, and Barbero (1989) worked on the free
vibration and delamination buckling analyses of laminated plates. A geometrically exact multilayer
structural theory has been developed more recently (Vu-Quoc et al., 2000).

Analysis of laminated anisotropic plates reinforced by stiffeners is complex. The numerical methods used
by many researchers are the best possible approach for computation of such structures. The effort has been
made to include stiffener characteristics into the plate/shell elements. The importance of the torsional ri-

Nomenclature

a, b plate length in x-direction and y-direction respectively
bs breadth of stiffener cross-section
c11 E1=ð1� m12m21Þ, material stiffness coefficient in laminar coordinates
d depth of stiffener cross-section
Do c11h3=12, laminate flexural rigidity in laminar coordinates
E1, E2 elastic moduli in fibre principle directions
G12, G23, G31 shear moduli with respect to fiber principle directions
h laminate thickness
hL thickness of a plate element in element layer L (Figs. 4 and 5)
r, s, t natural coordinates where t is in the direction of normal
u, v, w translational displacement in global axis x-, y- and z-direction
x, y, z global (Cartesian) coordinates
h ply angle, from global x-axis to fiber direction
hxhyhz rotational displacements with respect to the global coordinates
k buckling stress coefficient
rcr critical stress for initial buckling
rx, ry initial stress in global x- and y-axes respectively
mij Poisson’s ratio, transverse strain in j-direction due to stress producing unit strain in i-direc-

tion, when stressed in the i-direction
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gidity of the stiffener is also discussed in the literature (Venkatesh and Rao, 1985; Bhimaraddi et al., 1989).
The buckling performance of stiffened composite panels was studied using finite strip method based on the
classical laminate theory by Loughlan (1994).

In this paper, a layerwise finite element formulation is presented for the buckling analysis of stiffened
laminated plates. In addition to the in-plane discretization (x–y plane mesh), the laminated plate is dis-
cretized into layers along the thickness direction (z-mesh). The degenerated shell elements and the general
3-D beam elements are used to represent the layers and the stiffeners, respectively. Discrete constraints are
applied at nodal DOFs to accomplish the displacement continuity at the layer interface and at plate–
stiffener interface. In order to achieve smooth shear distribution across thickness, bilinear constraints are
applied to retain the independent transverse shear deformations in both layers adjacent to the interface
instead of using the conventional linear constraints. The effects of membrane displacements are also
considered in the derivation of the geometric stiffness matrix. The interaction between the lateral buckling
of the stiffener and the buckling of the laminate can be included. The advantage of the proposed model is its
applicability to both thin and thick laminated plates. For axially compressed laminated plates, their
buckling behavior can be seriously influenced by the imperfection sensitivity (Hui, 1986). The current finite
element formulation can easily account for ant kind of initial geometrically imperfections.

2. Finite element formulation

2.1. Basic assumptions

The following assumptions are made in developing the finite element formulation for the stiffened
laminated plates:

• Deformations in each layer follow the Mindlin hypothesis. However, the transverse shear deformations
in adjacent layers are not necessarily equal. Consequently, the variation of in-plane displacements in the
thickness direction exhibits a zigzag shape.

• Transverse normal stresses are neglected. Under this assumption, the homogeneous equilibrium in the
transverse direction is not satisfied in the element formulation. Therefore, the zigzag model is referred
to as a 3-D model with 2-D kinematic constraints.

• Stiffeners are assumed to have rectangular cross sections and warping of cross section is not considered.
The stiffeners can also be modeled as laminated plate, but these laminates are restricted to such that lam-
inae are perpendicular to the plate.

A typical stiffened laminated plate and its coordinate definitions are shown in Fig. 1. Nine-node iso-
parametric shell element as shown in Fig. 2, and a 3-D isoparametric straight beam element as shown in
Fig. 3 are used in the present work to model the plate/laminate and the stiffener, respectively. A layer,
herein, means an entity generated by discretizing the plate along thickness direction (z-mesh), and may not
necessarily represent a physical layer. It may actually represent a subdivision of a physical layer. Depending
on the number of layers generated by the 3-D mesh, the resulting model can be classified as a first-order
shear deformable model (one layer in the z-mesh) or a higher order shear deformable model (three or more
layers in the z-mesh). In the present investigation, the number of element layers is assumed to be equal to
the number of laminae.

The generalized form of the buckling eigenvalue problem using finite element discretization can be
written as

K þ kKG ¼ 0 ð1Þ
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where K is the elastic stiffness matrix, KG the geometric stiffness matrix and k represents the buckling ei-
genvalue. The derivation of the elastic and geometric element stiffness matrices are presented in the fol-
lowing sections.

Fig. 1. Eccentrically stiffened laminated plate.

Fig. 2. 9-Noded isoparametric shell element.
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2.2. Element stiffness matrix

As there is no substantial difference in the formulation of isoparametric shell and beam elements, the
procedure adopted here for the derivation of element matrices is applicable to both the elements.

The displacements at any point in the element are interpolated as

f u v w gT ¼
Xn
k¼1

Hkd
e
k ð2Þ

where n is the number of nodes per element; fde
kg ¼ fuk vk wk hxk hykg

T; fuk vk wk hxk hyk hzkg
T
represents the

displacements at node k, for the shell and beam element respectively; and Hk is the matrix of generalized
shape functions. For node k, the shape function matrix can be written as

½Hk	 ¼ Nkðr; sÞð½I 	½P 	Þ ð3Þ

in which

Pshell ¼ t
hL
2

0 1
�1 0
0 0

2
4

3
5; Pbeam�x ¼

0 t d
2

�s bs
2

�t d
2

0 0
0 0 0

2
4

3
5; Pbeam�y ¼

0 t d
2

0

�t d
2

0 �s bs
2

0 0 0

2
4

3
5 ð4Þ

where Nkðr; sÞ is the shape function in terms of Lagrangian polynomials for node k (Bathe, 1982); r, s and t
are the natural coordinates (see Figs. 2 and 3); hL is the thickness of the element layer (Fig. 4); bs and d are
the breadth and depth of the stiffener; and the matrix P represents the rotational contribution to the
displacement at an arbitrary point. Pshell, Pbeam�x, and Pbeam�y are the P matrices for the shell element, beam
element along x-direction and beam element along y-direction, respectively. I is the identity matrix of size
3
 3.

Fig. 3. 3-D isoparametric beam element.
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The strain–displacement relationship that include all shear strain components except transverse normal
strain is expressed as

f �x �y cyz czx cxy gT ¼
Xn
k¼1

Bkd
e
k ð5Þ

The matrix Bk in Eq. (5) represents the strain–displacement matrix which is derived as follows:

Bk ¼ ½Bk1 Bk2 � � � Bk5	 T ð6aÞ

Bki ¼ J�1
ii

oH ðiÞ
k

ori
ðfor i ¼ 1; 2; and r1 ¼ r and r2 ¼ sÞ ð6bÞ

Bk3 ¼ J�1
22

oH ð3Þ
k

os
þ J�1

33

oH ð2Þ
k

ot
ð6cÞ

Bk4 ¼ J�1
11

oH ð3Þ
k

or
þ J�1

33

oH ð1Þ
k

ot
ð6dÞ

Bk5 ¼ J�1
11

oH ð2Þ
k

or
þ J�1

22

oH ð1Þ
k

os
ð6eÞ

where H ðLÞ
k is the Lth row of Hk; J�1

ii the ith diagonal element of the matrix J�1; and J the Jacobian matrix.
The Jacobian matrices for the shell element, beam element along x-direction and beam element along y-

direction can be obtained respectively as

Fig. 4. Finite element mesh in thickness direction (NL ¼ number of element layer). (––) Layer interface, where continuity is attained;

(-�-�-) layer middle plane, where nodes are located.
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Jshell ¼

ae
2

0 0

0 be
2

0

0 0 hL
2

2
64

3
75; Jbeam�x ¼

le
2

0 0

0 bs
2

0

0 0 d
2

2
64

3
75; Jbeam�y ¼

bs
2

0 0

0 le
2

0

0 0 d
2

2
64

3
75 ð7Þ

where ae and be are the lengths of the shell element along x- and y-directions, respectively, and le is the
length of the beam element.

Following the procedure of minimization of total potential energy, the submatrix of the element stiffness
matrix, corresponding to nodes i and j, can be obtained as

Ke
ij ¼

Ve
8

Z Z Z
BT
i DBj drdsdt ði; j ¼ 1; 2; . . . ; nÞ ð8Þ

where D is the material stiffness matrix with respect to the global coordinates and Ve the volume of the
element.

2.3. Geometric stiffness matrix

The presence of compressive stresses in laminates can result into a loss of stiffness. This loss of stiffness is
accounted for by means of the geometric stiffness matrix (also known as initial stress matrix). Most of the
earlier research works considered only the contribution of out-of-plane displacements in deriving the
geometric stiffness matrix. The present work also takes into account the effects of in-plane displacements in
addition to flexural displacements. Therefore, Green’s strains are used instead of von K�aarm�aan’s strains in
the following derivations. The Green’s strains are expressed as

f�g ¼ f�lg þ f�nlg ð9Þ

where f�lg ¼ f�xx �yy cyz czx cxyg
T
is the linear strain; and {�nl} the geometric nonlinear strain whose com-

ponents are

�nlij ¼
1

2

X3

m¼1

oum
oxi

oum
oxj

ðfor i; j ¼ 1; 2Þ ð10Þ

where um ¼ u; v; and w for m ¼ 1, 2, and 3, respectively.
From Eq. (10), the matrix form of the nonlinear strain {�nl} is represented as

�nl ¼ 1

2
AX; ð11Þ

where

X ¼ ½X1 X2	 ð12Þ
and

A ¼

ow
ox 0

0 ow
oy

ow
oy

ow
ox

2
64

3
75 ð13Þ

The elements of the vector X in Eq. (12) can be written as

Xi ¼ ou1
oxi

ou2
oxi

ou3
oxi

h iT
ðfor i ¼ 1; 2Þ ð14Þ
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Again, with the displacement interpolation described in Eq. (1), Eq. (14) can be expressed as

X ¼
Xn
k¼1

Gkd
e
k ð15Þ

in which Gk is a 6
 5 matrix for the shell element and a (6
 6) matrix for the beam element. The rows in Gk
are defined by

Gki ¼ J�1
11

oH ðiÞ
k

or
ðfor i ¼ 1; 2; 3Þ ð16aÞ

Gki ¼ J�1
22

oH ði�3Þ
k

os
ðfor i ¼ 4; 5; 6Þ ð16bÞ

Each sub-block of the element geometric stiffness matrix (Zienkiewicz, 1977), representing the contribution
of node j to i can be obtained as

Ke
Gij

¼ Ve
8

Z Z Z
GT
i r

0Gj drdsdt ðfor i; j ¼ 1; 2; . . . ; nÞ ð17Þ

where r0 is the initial stress matrix with respect to the global coordinates. The initial stress matrix can be
expressed as

r0 ¼ rxI sxyI
sym ryI

� �
ð18Þ

where I is the identity matrix of size 4
 4.

2.4. Interlayer continuity

Since there are no nodes in the surface of the shell or the beam element, no common nodes are shared by
the elements in adjacent layers as shown in Fig. 5. Since the displacements in a stack are all coupled after
the interface constraints are applied, the column heights determining the skyline of the global stiffness
matrix are calculated in terms of element stacks instead of individual elements. In order to attain the
displacement continuity in the element layer interfaces (interlayer continuity), constraints are explicitly
imposed to the nodal DOFs. The continuity of the in-plane displacement v between layer L and Lþ 1 is
illustrated in Fig. 5(a). The constraint equation for v is established by means of the displacements at the
reference points PLþ1=2, which is the projection of node points PL and PLþ1 at the interface and has a new
location P 0

Lþ1=2 after deformation. Based on the interlayer continuity, the in-plane displacement vLþ1=2 at the
reference point, determined by the displacement vL and hxL of layer L, or vxLþ1 of layer Lþ 1, must be
identical. The same rule applies to uLþ1=2. Thus, the interlayer constraining relationship for the in-plane
displacements u, v can be derived as follows:

uL þ
hL
2

hyL ¼ uLþ1 �
hLþ1

2
hyLþ1 ðfor L ¼ 1; 2; . . . ;NL� 1Þ ð19aÞ

vL �
hL
2

hxL ¼ vLþ1 þ
hLþ1

2
hxLþ1 ðfor L ¼ 1; 2; . . . ;NL� 1Þ ð19bÞ

With the intention of eliminating the rotations in the ðLþ 1Þ layer, Eqs. (19a) and (19b) are rearranged
into:

hyLþ1 ¼ ðuLþ1 � uLÞ
2

hLþ1

� hyL
hL
hLþ1

ðfor L ¼ 1; 2; . . . ;NL� 1Þ ð20aÞ
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hxLþ1 ¼ �ðvLþ1 � vLÞ
2

hLþ1

� hxL
hL
hLþ1

ðfor L ¼ 1; 2; . . . ;NL� 1Þ ð20bÞ

It is evident from Fig. 5 that this constraint cannot be accomplished by using rigid arms because a rigid arm
remains straight and does not allow the slope change at the reference point. Physically, the constraint Eqs.
(19a) and (19b) or (20a) and (20b) represent two rigid arms connected at the reference point by a universal
ball joint. Because of this, they are known as bilinear constraints in order to be distinguished from the
constraints imposed by adding rigid arms.

Eqs. (19a), (19b), (20a), (20b) are in connection with two elements in two adjacent element layers. Thus,
the constraints cannot be introduced to the equilibrium equations at element level. It must be implemented
when the global stiffness matrix is being setup. Meanwhile, hxLþ1 and hyLþ1 are eliminated except in the top
layer. Since the remaining degrees of freedom are predictable after the nodes and boundary conditions are
defined, the degrees of freedom to be eliminated are not numbered. Therefore, there is no additional change
in the skyline of the global matrices due to the elimination.

The constraint equations are also valid for the inter-element connection at the stiffener–plate interface.
In this case, L equals NL where the layer Lþ 1 ð¼NLþ 1Þ denotes the beam layer, while hLþ1 is replaced by
the depth of stiffener d. At the node where different stiffeners intersect, the stiffener depths in the x- and the
y-directions are given the corresponding stiffener depths dx and dy as shown in Fig. 5(b).

Fig. 5. Bilinear (a) interlayer continuity and (b) plate–stiffener continuity.
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3. Numerical results and discussions

The correctness of the finite element model proposed for the buckling analysis of stiffened laminated
plates in the previous sections is verified by comparing the numerical results with the available analytical
solutions. The inverse iteration method is adopted to extract the lowest eigenvalue corresponding to
buckling. A 4
 8 finite element mesh is used for the in-plane layers of the plate. A uniformly reduced
(2
 2) integration scheme is adopted for both shell and beam elements. In the following sections, results
are presented for unstiffened anisotropic plates, stiffened isotropic plates, stiffened orthotropic and stiffened
laminated plates.

3.1. Unstiffened anisotropic plates

The significance of orthotropic ratio E1=E2 and thickness to length ratio h=a in the buckling behavior is
investigated separately. A parametric study is conducted using the proposed finite element model for the
buckling analysis of thick plates and laminates. The variation of buckling coefficients against the ratio of
depth of stiffener to thickness of laminate, d=h, is investigated. The results obtained are compared with the
3-D elasticity solution given by Noor (1975).

A two and three layered cross-ply square plate with the lay-up of 0�=90� (NL ¼ 2) and 0�=90�=0�
(NL ¼ 3), as shown in Fig. 6, are analyzed under uniaxial compression along x-direction. All the sides of
the plate are simply supported. The material properties are G12=E2 ¼ G31=E2 ¼ 0:6, G23=E2 ¼ 0:5 and
v12 ¼ 0:25. From the analysis, buckling coefficients for various ratio of orthotropy E1=E2 are obtained for a
laminate thickness to length ratio h=a ¼ 0:1. The results are presented in Fig. 6, and they comparable with
the 3-D elasticity solution presented by Noor (1975).

The buckling coefficients for plate thickness to length ratios h=a ranging from 0.01 to 0.20 are studied for
a degree of orthotropy E1=E2 ¼ 30 and the results are shown in Fig. 7. The ratio of buckling coefficients
K ¼ k=k� is plotted against the thickness to length ratio h=a. The buckling coefficient k ¼ rcra2=ðE2h2Þ is the
one determined from the proposed finite element model and k� ¼ rcroa2=ðE2h2Þ depends on the critical stress
rcro which is based on the classical laminate theory (Jones, 1975). In this study, the solution by classical
laminate theory is used only for the calculation of buckling coefficient k� of symmetric cross-ply plates.
Similar solution for skew-symmetric laminates is available to calculate the critical stresses based on the
classical laminate theory. However, in the present work, it is not used in determining the buckling coeffi-
cients of the skew-symmetric laminate in Fig. 7. Instead, the buckling coefficient computed from the present
finite element method for a plate thickness to length ratio h=a ¼ 0:01 is used. In fact, at this thickness ratio,
the buckling coefficient of the symmetric laminate determined from the present analysis deviates from the
classical laminate theory solution only by 0.07%. The results shown in Fig. 7 agree well with the 3-D
elasticity solution reported by Noor (1975).

3.2. Stiffened single layer plates

Having verified the convergence of the present finite element model for simple plates in the previous
section, it is further used to analyze stiffened plates in which the stiffeners are modeled as beam elements.
There are two cases analyzed under this category: one is a stiffened isotropic plate and another is a stiffened
orthotropic plate. These two problems are solved mainly to verify the performance of proposed shell and
eccentric beam elements in modeling the stiffened plates under in-plane compression.

3.2.1. Stiffened isotropic single layer plate
A stiffened rectangular isotropic plate as shown in Fig. 8 is studied for buckling behavior under uniaxial

in-plane compression along x-direction. The stiffener is located at the center of the panel along the direction
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of compression. Both the plate and the stiffener are simply supported on all sides and the material prop-
erties are assumed to be isotropic with Poisson’s ratio m ¼ 0:3. The plate thickness to length ratio is taken as
0.01, and this corresponds to a thin plate situation. The buckling coefficient k ¼ rcrb2h=ðp2Do) is computed

Fig. 6. Buckling coefficients of a simply supported cross-ply square laminate with orthotropic ratio (NL ¼ number of layers).

Fig. 7. Buckling coefficients ratio of a simply supported cross-ply square laminate with thickness to length ratio (NL ¼ number of

layers).
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for plate aspect ratios a=b ranging from 0.6 to 3.0. rcr is the critical stress; b the width of the plate, and the
flexural rigidity Do ¼ Eh3=12ð1� m2Þ.

In the case of h=a ¼ 0:01, as shown in Fig. 8, the results of the present finite element model are not
expected to be significantly different from the ones obtained from the thin plate theory (Timoshenko and
Gere, 1961). However, for the smaller aspect ratios ð0:6 < a=b < 1:0Þ, the difference increases with the size
of the stiffener (larger c ¼ Is=bDs). This difference is attributed to the neglect of the torsional rigidity of the
stiffener in Timoshenko and Gere’s derivation (1961). When the plate is short in the stiffener direction
(smaller a=b), the plate tends to buckle in a mode that is antisymmetric about the stiffener. As a result, the
stiffener is twisted and the torsional rigidity of the stiffener becomes very effective. This leads to higher
buckling coefficients. The torsional rigidity of the stiffener does not affect the buckling load if the stiffener is
not twisted as the plate buckles for large a=b. For larger a=b values, the difference in the buckling coeffi-
cients in Fig. 8 can be due to the assumption that in-plane displacements are negligible, and due to the fact
that the moment of inertia of the stiffener (IsÞ is computed with respect to the plate–stiffener interface in
Timoshenko and Gere’s derivations.

3.2.2. Stiffened orthotropic single layer plates
A stiffened orthotropic rectangular plate, as shown in Fig. 9, is studied under uniaxial compression along

y-direction. The single layer plate is centrally stiffened along the y-direction. Parametric studies were
conducted for plate aspect ratios a=b and stiffener depth to plate thickness ratios d=h. The width of the
stiffener is assumed to be equal to the plate thickness h for all cases. The plate thickness to length ratio is
kept as h=a ¼ 0:01. The strong material direction coincides with the x-axis of the plate and the longitudinal
direction of the stiffener. The material is assumed to be E-glass/Epoxy possessing the following properties:
E1 ¼ 60:7 GPa (8:8
 103 ksi), E2 ¼ 24:8 GPa (3:6
 103 ksi), G12 ¼ G31 ¼ G23 ¼ 12:0 GPa (1:7
 103 ksi)
and m12 ¼ 0:23. The buckling coefficient is defined as k ¼ rcra2h=Do, where the flexural rigidity
Do ¼ E1h3=12ð1� m2Þ.

Fig. 8. Buckling coefficient of a stiffened isotropic plate with plate aspect ratio (Is ¼ bsd3=3, c ¼ Is=bDo, h=a ¼ 0:01 and d ¼ bsd=bh).
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The buckling coefficients and mode shape transition are given in Figs. 9 and 10 for stiffener depth to
plate thickness ratios d=h varying from 0.01 to 10, and plate aspect ratios a=b varying from 0.5 to 2.0. It is
demonstrated that for square plates (a=b ¼ 1:0), as d=h reaches 6.665, the buckling coefficient k drops
suddenly (snapping) from k ¼ 204 to k ¼ 104 and then remains constant for d=h > 6:665. The buckling
mode shifts from a saddle shape into a double antisymmetric shape as shown in Fig. 10. This does not occur
with rectangular plates with large aspect ratios ða=b > 1:75Þ. The results revealed from parametric studies
(Guo, 1996) show that the lateral stability of the stiffener has a significant impetus on the buckling of the
plate. For plates with stiffeners having a small depth, the buckling is initiated by plate itself. If the stiffener is
very deep, the buckling of a stiffened plate may be initiated by lateral buckling of the stiffener. The stability
of the stiffener is also affected by the torsional restraint provided by the plate flexural rigidity.

3.3. Stiffened laminated plates

3.3.1. Stiffened symmetric cross-ply laminated plates
A simply supported square stiffened laminated plate with symmetric cross-ply (90�=0�=90�) configuration

is analyzed under uniaxial compression along the x-direction as shown in Fig. 11. The laminated plate is
stiffened at the center along the direction of compression. The material properties of the stiffener and
laminate are G12=E2 ¼ G31=E2 ¼ 0:6, G23=E2 ¼ 0:5 and m12 ¼ 0:25. The stiffener is assumed to be along the
strong axis.

Parametric studies are conducted for various degrees of orthotropy R ¼ E1=E2 and for different stiffener
depth to laminate thickness ratios d=h. The thickness to length ratio h=a is kept as 0.05, and the stiffener
width bs is assumed to be equal to the laminate thickness. The buckling coefficients k ¼ rcra2=ðE2h2Þ ob-
tained from the present study are given in Fig. 11. It is seen that the buckling coefficient snaps as the
stiffener depth increases. This snapping is mainly due to the lateral instability of the deep stiffener. As the
degree of orthotropy increases, the buckling coefficient also increases. But the ratio of stiffener depth to
plate thickness at snapping (transition of mode shape) decreases with increasing degree of orthotropy. After

Fig. 9. Buckling coefficient of a stiffened orthotropic plate with stiffener depth to plate thickness ratio.
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Fig. 10. Mode transition of a stiffened orthotropic square plate with stiffener depth ratio.

Fig. 11. Buckling coefficients of a stiffened cross-ply square laminate with stiffener depth to laminate thickness ratio.
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snapping at each degree of orthotropy, the buckling coefficient remains constant for all values of stiffener
depth to plate thickness ratios d=h. This shows that the stiffeners are efficient in increasing the buckling load
only up to a certain value of stiffener depth.

3.3.2. Stiffened symmetric angle-ply laminated plate
A simply supported square stiffened angle-ply ðh=� h=hÞ laminated plate is studied under uniaxial

compression along the x-direction. The laminated plate is centrally stiffened along the x-direction, and the
material strong direction coincides with longitudinal axis of the stiffener. The orthotropic material prop-
erties of each layer are G12=E2 ¼ G31=E2 ¼ 0:6, G23=E2 ¼ 0:5 and m12 ¼ 0:25. The laminate thickness to
length ratio, h=a, is taken as 0.05 and the stiffener width, bs, is assumed to be equal to laminate thickness.
The buckling coefficients k ¼ rcra2=ðE2h2Þ are given in Fig. 12 for ply angles h ranging from 0� to 90�, while
the change in buckling coefficients is given in Fig. 13 for stiffener depth to laminate thickness ratios d=h
ranging from 0.01 to 8.

Fig. 12 shows that the variation of the buckling load with the ply angle h for a stiffened laminate
(d=h > 0) which is not symmetric about h ¼ p=4, as is the case for unstiffened laminates ðd=h ¼ 0Þ.
Therefore, attempts to optimize either the ply angle or the stiffener depth to laminate thickness ratio must
consider the full range of the ply angle 0�6 h6 90�. It is also noted that for h < p=6, the buckling coefficient
k at d=h ¼ 8 is lower than the case when d=h ¼ 4. This is due to the fact that the stiffener buckles laterally
when d=h ¼ 8, while the stiffener remains stable when d=h ¼ 4.

Fig. 13 shows that the snapping in buckling coefficient does not occur in laminates with ply angle h
greater than p=4. For h6 p=3, the buckling coefficient remains constant after stiffener depth ratio d=h
reaches a value of 6, which indicates that the stiffener is acting more like an intermediate support. For the
laminates with a small ply angle ðh < p=4Þ, snapping in the buckling coefficients is found because of the
lateral buckling of the stiffener. It is observed that the flexural stiffness of laminate provides a torsional
restraint to the stiffener as the stiffener tends to buckle laterally. Recalling that the ply angle is defined as the

Fig. 12. Buckling coefficients of a stiffened angle-ply square laminate with ply angle.
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angle from the laminate plate x-axis to the fiber direction, a laminate plate with small ply angle possesses a
small flexural rigidity Dy , which leads to a smaller torsional restraint to the stiffener.

4. Conclusions

A layered (zigzag) finite element formulation is developed for the buckling analysis of stiffened plates and
laminates. The procedure adopted for the derivation of the elastic and geometric stiffness matrices of the
shell and beam element is presented, and the method for attaining interlayer continuity is discussed. Nu-
merical results are presented for the buckling behavior of unstiffened and stiffened plates/laminates under
uniaxial compression. The results are comparable with available solutions. A parametric study is performed
with various plate aspect ratios, stiffener depth to plate thickness ratios, ply angle orientations, degrees of
orthotropy and number of layers. The influence of all these parameters on the buckling load is presented
and discussed.

The proposed finite element formulation can accurately predict the buckling behavior of plates/laminates
for various thickness to length h=a ratios. It is demonstrated that the interactive buckling or the mode shape
transition between laminated plate and stiffener plays an important role in maintaining the bucking be-
havior of stiffened laminated plates. A deeper stiffener leads to a higher buckling load only to a certain
extent. Beyond a certain depth, the lateral instability of the stiffener can occur instead of the buckling of the
laminated plate. The lateral buckling of the stiffener may result in the sudden drop of the buckling load of
stiffened laminated plates. Therefore, the lateral buckling of a deep stiffener must be monitored as a critical
factor to the buckling behavior of stiffened laminated plates. Since the present beam model for the stiffener
includes lateral, flexural and torsional degrees of freedom, this permits the capture of the true buckling
behavior of the stiffener. The interaction of stiffener lateral buckling with the buckling of laminated plates
can not be revealed if a 2-D beam element is used to present the stiffener where the lateral bending stiffness
is ignored.

Fig. 13. Buckling coefficients of a stiffened square angle-ply laminate with stiffener depth to laminate thickness ratio.
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It is found that the lateral-flexural stiffness and torsional stiffness of the stiffener are the major factors in
keeping the stiffener laterally stable. The lateral buckling of the stiffener is influenced by the torsional re-
straining effect provided by the laminated plate. This restraining effect is determined by the flexural stiffness
of the laminated plates about the stiffener that is in turn determined by the degree of orthotropy, the fiber
orientation, the aspect ratio, and so forth. The convergence on element mesh becomes stringent when a
relatively deep stiffener is used. Experience has shown that a mesh of 6
 6 for whole laminated plate is fine
enough if the stiffener is week or moderately strong. However, a finer mesh is needed if a very strong
stiffener is used or the conditions follow a mode shape in the adjacent point of mode shape transition.

The numerical results have shown how the proposed finite element formulation can be used to optimize
the design of compressed stiffened plates/laminates by varying the stiffener depth to plate/laminate thickness
ratio d=h and/or by varying the ply angle h. Optimization must consider the full range of the ply angle
0�6 h6 90�. It is anticipated that the finite element formulation can be used for the evaluation of the
buckling behavior of the modern bridge structure made of stiffened laminated composites.
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